IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

309

The Software Life Cycle—A Management and
Technological Challenge in the Department
of Defense

BARRY C. DE ROZE anp THOMAS H. NYMAN, SENIOR MEMBER, IEEE

Abstract-The importance of software in defense systems continues
to intensify as new systems emerge in response to increasing threats
and declining force levels. The need to manage this software as a
critical component of defense systems over their life cycle is becoming
widely recognized. A general awareness of this need as an institutional
problem requiring special attention within the Office of the Secretary
of Defense has been growing as software problems have reached top
level defense management visibility with increasing regularity. Soft-
ware costs are continuing to multiply in step with advancing weapons
systems sophistication, and opportunities for cost avoidance now are
leveraged against large dollar investments. These conditions charac-
terize the computer industry at large, but very little overall focus has
been visible to improve the software development process. Conse-
quently, the Department of Defense (DoD) has undertaken a two part
effort to accelerate both near-term and long-term improvements in
software development for weapons system applications. These efforts,
the establishment of software life cycle management policy and prac-
tices, and the vigorous development and application of new software
technology are discussed in considerable depth.

Index Terms—Computer resources, configuration management, DoD,
software, software life cycle, software management, software risk
analysis, standardization.

I. BACKGROUND

HE Department of Defense (DoD) is presently spending

over $3 billion per year on defense system software, ex-
cluding software for corporate management and logistics auto-
matic data processing (ADP) systems. This high investment
area, that we will call embedded computer applications, is the
subject of our discussions. It is our opinion that DoD has been
doing a poor job managing this increasingly important re-
source, and further we have been doing little to encourage the
application of science and technology to improve it. Both of
these shortcomings must change!

In this paper, we discuss the problems and their underlying
causes which confront DoD in this area, summarize the correc-
tive actions now being taken on the management front, and
review some of the more promising developments being
investigated and applied within the software science and
technology program.

Manuscript received November 11, 1977; revised November 18, 1977
and January 19, 1978.

B. C. De Roze is with the Office of the Secretary of Defense, Wash-
ington, DC 20301.

T. H. Nyman was with the Research and Advanced Technology Direc-
torate within the Office of the Under Secretary of Defense, The Penta-
gon, Washington, DC 20301. He is now with the General Research
Corporation, McLean, VA 22102.

Neither the problems nor the proposed solutions that will
be discussed are new. They have been studied at great length
in technical meetings and within industry for the last ten years
or more. The new element is in the sense, at all levels of
DoD, of the need to act decisively and to act now!

Over the past few years there have been a series of defense-
sponsored studies—each highlighting areas where defense-
systems software requires improvement for reasons of cost
and reliability [1]-[4]. During the past year, DoD has put
together (with considerable help from industry and the aca-
demic communities) a plan of management and technical
action—this action plan is the topic of this paper.

The main thrust of the remarks in this paper will be directed
at embedded computer applications and not at the corporate
management and logistics ADP environment. The discussion
will focus on those issues which provide the incentives for, and
barriers to, good software engineering and management prac-
tices in the defense system acquisition process. Recognizing,
however, the need for consistency with the ADP community,
close ties are being maintained, and they must continue to be
maintained to assure maximum transferability of ideas, tools,
techniques, and products.

In general, because of their R&D nature and close tie-in with
hardware components of defense systems, there is general
acceptance that the software practices most applicable to
embedded computers should parallel closely those manage-
ment practices which have been developed for hardware
acquisition. This view will be expanded upon later; first we
will quickly review, in Section II, the scope of the problems.
Section III describes current actions being taken by the DoD
to improve the management of computer resources and soft-
ware in both the long and the short term; Section IV examines
the research and development thrusts, and the priorities that
the DoD has set to reinforce these management steps. Finally,
Section V offers concluding remarks about where we stand
today, and what still remains to be done.

II. SOFTWARE ISSUES IN PERSPECTIVE

Software is big business within the DoD. As noted earlier,
the current annual expenditure in software for embedded
systems (weapons, platforms, command and control, and
intelligence) is now estimated in excess of $3 billion; yet even
this substantial sum is only the tip of the iceberg. It includes
direct costs only and represents a conservative estimate based
on incomplete and nonuniform data. This uncertainty, as a
matter of fact, is indicative of a clear problem in itself. The

0098-5589/78/0700-0309$00.75 © 1978 IEEE

310

distribution of software costs for all military systems for a
given fiscal year shows that 68 percent of known costs are
consumed in development of new systems (R&D), while the
remaining 32 percent of the known cost is categorized as
operation and maintenance (O&M) of systems already in the
field. The majority of complex software systems are new and
still in the development cycle. As these new systems are
deployed, this cost distribution will reverse to emphasize the
increased O&M burden. This, coupled with greater system
longevity, may ultimately result in a five or ten to one ratio
of O&M cost to R&D cost when viewed over the total life
cycle of a typical system. With these projections, we will need
an army of software maintainers.

Over and above the cost picture, software is finding its way
into the critical path of many more defense systems. Major
defense systems currently exhibiting a critical software de-
pendency number approximately 115, with 50 percent of
these in the R&D phase and the remainder in the O&M phase,
and with the degree of software critical dependency increasing
among the newer systems.

The functional applications of software within the DoD
pervade almost every program. Performance critical software
can be found in all extremes—from the large Worldwide
Military Command and Control System (WWMCCS) and
Trident Fleet Ballistic Missile (FBM) down to miniaturized
flight control packages for missiles and aircraft. Ancilliary
support equipment such as trainers, simulators, automatic
test equipment, test range instrumentation and special test
vehicles also contain software functions of increasing criti-
cality.

A. Nature of the Problem

Several clearly observable manifestations, such as excessive
software development and maintenance costs, schedule slip-
pages and delays, and excessive errors and faults, can be seen
repeatedly. Underlying these superficial manifestations—lack
of transferability, incomplete hardware/software tradeoffs, and
the treatment of software as data rather than as deliverable and
testable products—are some of the causes behind the cost
and quality deficiencies.

This special issue includes other papers which deal with some
of these basic problems. Let us briefly explore some of the
issues which are of particular relevance to top management,
within DoD as well as the civil sector.

B. Inadequate Cost and Schedule Estimates

Studies by industry and DoD have concluded that today
there are no simple universal rules for predicting software
costs accurately, and that to do so requires an understanding
of the nature of the individual program and the individual
routines within the program [4], [5]. This will likely remain
the situation for some time to come, but we must begin now
to take action to reduce the amount of “individuality” in cost
estimating. In this regard, it must be said that we currently
suffer from a poor historical data base of software costs. Not
only is the DoD unaware of what is being spent on software in
the development, production, and operational/maintenance
phases of a defense systems’ life, but there is considerable

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

uncertainty as to the proportions of dollars which should be
spent. As it currently stands, DoD in general does not budget
dollars or plan time for the predictable problems and changes
which we should prudently anticipate in each of these phases.

This situation is aggravated by the lack of common defini-
tions, procedures, and organization in planning and managing
software development. While most management and technical
approaches may have merit, and some are excellent, it is not
practical for government review officials to be well acquainted
with the merits and shortcomings of all the approaches pre-
sented to them. In addition, it is difficult to develop useful
universal yardsticks. If DoD reviewers cannot really under-
stand what is proposed for each program because of defini-
tional problems, then they cannot apply sound judgment in
their management responsibilities. In general, DoD must
accept the estimates which are provided—mo matter how
optimistic—and budget and schedule to them. That’s how
the problem gets started!

C. People as a Cost Factor

Each contractor has the problem of retaining highly trained
individuals to design, develop, test, and maintain the software.
At a recent software conference, statistics were produced to
show that the turnover time for an average programmer was
about three years [6]. There is a motivation problem for the
software “production” worker, just as with the hardware
“assembly line” worker. To illustrate how highly labor-
intensive software production is, it has been estimated that
increasing programmer productivity by just one instruction
per man-day could save $45 million per year in defense system
development and maintenance alone.

D. Tracking User Requirements

The lack of means to produce clear, concise, and unambig-
uous statements of user requirements is one of the biggest
contributors to the high cost of software. The problem here
again has to do with the absence of a clear understanding on
the part of both software users and developers as to what can
be accomplished with software. Frequently, users either
underestimate or overestimate the state of the art. At the
same time it is important that software specialists be able to
anticipate the likely directions of change, and design software
and software tools so that it is fairly easy to accommodate
changes when they come.

E. People in Hardware/Software Tradeoffs

Another part of the software environment impacting on
the personnel issue is the lack of ability to make the necessary
design tradeoffs between hardware, firmware, and software
implementation. The classical institutional separation of these
functions in design organizations acts to reinforce this barrier.
To assess the strengths, weaknesses, and ensuing implications
of these tradeoffs on a “systems-wide” basis for life-cycle cost
and reliability, systems engineers with in-depth understanding
of all these disciplines, and who can objectively perform and
integrate tradeoff analyses to produce a balanced system, are
needed. These people are in extremely short supply and their

DE ROZE AND NYMAN: THE SOFTWARE LIFE CYCLE

cultivation in the future remains a major educational and
career incentives problem.

F. Insufficient Software Management and Control

Another area of overall concern has to do with the subject
of software management in the DoD, and specifically as it
pertains to embedded systems. DoD has become somewhat
expert at knowing how to divide the responsibilities of the
“requirements,” “development,” and the “procurement”
people in the hardware acquisition process; and there is a
fairly clear line of demarcation between what is hardware
and what constitutes data. Software, however, creates some-
thing of a problem, for up until recently most managers and
contracting personnel were content to treat it simply as data.
As costs began to soar, it became obvious that some manage-
ment changes were in order. To manage software in the same
manner as hardware, we must begin to think of software in
the same manner as hardware; we must begin to think of
software as “property” and not solely as “data” (fully recog-
nizing the legal implications of the term “property”). Cost
information which is submitted for data items in contracts are
usually only estimates and do not provide for detailed cost
breakdowns for each data item. Frequently, it is difficult to
get a clear and distinct separation of data costs from engi-
neering efforts tied to a deliverable contract schedule item.
Steps must be taken to clear up this matter for software
estimates.

More to the point, however, DoD personnel must recognize
that from a functional standpoint, computer software is
equivalent to hardware, and must be delivered as an active
system component. This means that technical and manage-
ment control is required to insure a quality engineered and
tested product. Management instruments and disciplines
influencing computer software engineering, prototyping, con-
figuration control, quality assurance, production control,
reliability, maintainability, standardization, modular partition-
ing, design reviews, and life-cycle costing must be applied.

G. Insufficient R&D for Enhanced Software Productivity

The next issue concerns the need for more directed research
and development on software. We refer here to the need to
convert software development from an art into an applied
science. This can only be accomplished by giving increased
attention to the research and development of software tools
and formal methods, such as those that characterize the engi-
neering fields. We must get away from the notion that soft-
ware advancements are the sole domain of “individualists”
or “artisans.” The best practitioners, individual superstars,
can produce high quality and efficient software on schedule
at low cost. However, it is not very useful to decree an ap-
proach to “hire just the good programmers.” In fact, there is
no scientific measure of either the quality of software or the
performance of practitioners. It is all “unknown”-and
the fact that software is “invisible”” makes it that much harder.
In this regard, great encouragement can be found in the
efforts which have recently been observed in both the govern-
ment and business sectors to expand upon the concept of soft-
ware production facilities. The “software factory™ concept is

311

fast becoming an important means for imparting the necessary
disciplines that are needed for software “creation.” It involves
the adoption of a system of integrated aids and tools to pro-
vide a disciplined and repeatable approach to software develop-
ment; the replacement of ad hoc agglomerations of indi-
vidualistic techniques and tricks with a standardized and
integrated methodology. One of the key objectives of this
approach has been to introduce manufacturing methods and
engineering principles into those software production pro-
cesses which satisfy design, implementation, and management
requirements of control.

H. Duplication in Software Development

There is currently no way of knowing exactly how much
DoD spends on “support” and “applications” software which
had previously been produced for some other program or
programs. Military Department spokesmen state that they
believe it is extensive and that the first effort to control
costs should begin in this area. Without clear software de-
velopment standards, such as programming languages and
adequate software management policies for defense systems
acquisition, the increase in costs owing to the duplication of
software can only be expected to grow.

1. High Cost of ‘“Maintenance”

A significant cost factor, not to mention the operational
readiness implications, has been software errors or problems
discovered well after acquisition. One recent DoD study
showed that development costs for Air Force avionics soft-
ware averaged about $75 per instruction while the cost of
“maintenance” corrections of deployed software has ex-
perienced costs in the range of $4000 per instruction [7].
The purpose of quoting these figures is not to offer them as
representative numbers but to demonstrate that the costs of
software maintenance are many times those of development.
Note here that software maintenance, in addition to correc-
tion of problems (and the perpetual cycle of injecting new
errors with each correction), includes the updating and re-
vision of applications programs caused by changes to, or
expansion of, the operational mission. In the future the DoD
will need to take a comprehensive look at the life-cycle
approach to acquiring software. This will include the formula-
tion of design and management principles, the development
and validation of software life-cycle costs models, and evalua-
tion of design methodologies for ease of maintenance and
program update.

III. CURRENT PoLICY ACTIONS

The problems and issues raised are real, and they require
immediate attention. DoD has begun to take action aimed at
improving the management situation for both the short and
the long term.

The proper organizational focii both at the Office of the Sec-
retary of Defense (OSD) and Service levels have been created.
A DoD-wide Software Management Plan which addresses all
of the problems identified earlier has been drafted and widely
coordinated. This plan has been released and is available
through the Defense Documentation Center [8]. A second

312

management action, DoD Directive 5000.29, establishes policy
for software management and control by DoD components
of embedded computer resources and software during de-
velopment, acquisition, deployment, and support, and was
issued in April, 1976. A third action, DoD Instruction
5000.31, adopted seven higher order programming languages as
interim standards for use in developing new defense systems.

The theme pervading all of these steps is to elevate software
policy, practices, procedure, and technology from an artistic
enterprise to a true engineering discipline. Or to put it another
way—to treat software more like hardware—throughout its
complete life cycle.

We would like next to elaborate further on specific actions
and policies now being implemented within the DoD. These
initiatives apply to all major defense system acquisition pro-
grams under the review authority of the Defense System
Acquisition Review Council (DSARC) [9], as well as all
weapons programs of lesser magnitude.

A. Software Requirements and Risk Analysis

The first area of emphasis under this newly formed policy
concerns the requirements validation and risk analysis atten-
dant to computer resources and software. Briefly stated, com-
puter resource requirements, with particular emphasis on soft-
ware cost and risk and on hardware/software/firmware design
tradeoffs, must be reviewed, analyzed, and validated during
the early concept formulation and program validation phases
of new defense system development, prior to the full scale
development decision point [9]. This analysis must assure
conformance of planned computer resources with stated oper-
ational requirements. Risk analysis, preliminary design,
hardware/software integration methodology, use of existing
software modules, standardization, external interface control,
security features, and life cycle system planning are included
in the review. Testability of software, reliability, integrity,
maintainability, ease of modification, and transferability will
be major considerations in the initial design. The risk areas
and a plan for their resolution must be included in a Decision
Coordinating Paper, an official document which defines pro-
gram goals, establishes cost/schedule/performance thresholds,
and demonstrates implementation of Secretary of Defense
guidance [9].

In addition, computer resource requirements will be con-
tinuously coordinated and reconciled with system operational
requirements throughout system development after the
decision to enter full scale development.

The effect of this policy will be to emphasize examination
of software related systems issues very early in the develop-
ment cycle prior to a major management commitment, and to
insure that software is given the same visibility as hardware
during these early phases of system evolution. In addition, it
will provide top level Service and OSD management visibility
into cost, schedule, option, and risk parameters at a time when
subsequent development can be meaningfully influenced.

B. Computer Resource Life-Cycle Planning

A computer resource life-cycle plan will be developed prior
to the decision to enter full scale development, and will be
maintained throughout the life of the new system. The pur-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

pose of the plan is to identify important acquisition and
life-cycle planning factors, both direct and indirect, and to
establish specific guidelines to ensure that these factors are
adequately considered in the acquisition planning process
[10]. Resource planning is to include hardware and software
design, cost, and schedule factors; documentation; and oper-
ating and maintenance personnel needs.

This policy will place economic trade-offs, acquisition
strategy, and maintenance and modification decisions on a
life-cycle basis, and eliminate the tendency to optimize de-
velopment costs and schedules at the expense of the subse-
quent operations and support costs. DoD must stop mortgag-
ing its future in exchange for fleeting benefits during
development.

C. Configuration Management of Computer Resources

This policy action concerns the configuration management
of computer resources in major defense systems. DoD Pro-
gram Managers can no longer permit software to be treated as
a data element to be acquired by a one-line entry on a list
of deliverable documents. Instead, software will be treated
as a fullfledged configuration item, with all the required
disciplines, controls, and testing included. The emphasis will
be on product definition, requirements traceability, interface
definition and control, cost, quality traceability, and the
corollary control disciplines. In particular, software per-
formance will be specified and tested with progressive design
review audits similar to hardware.

D. Support Software Deliverables

When it is cost-effective to do so, unique support items
required to develop, test, and maintain the delivered computer
resources over the system’s life-cycle will be specified as de-
liverable, with DoD acquiring rights to their design and/or use.
Examples of such support items are compilers, linkers, en-
vironmental simulators, optimizers, documentation aids, test
case generators and analyzers, and training aids. The provis-
ions of the Armed Services Procurement Regulations will
govern the implementation of this policy.

This policy again emphasizes the life-cycle cost-effectiveness
aspects of the acquisition decision. It is in part intended to
remove the long term dependency on a single development
contractor (thereby preserving DoD’s maintenance and support
options for the longest possible time), and it represents a
necessary, although not sufficient step toward achieving true
transferability of support software across mission and appli-
cation lines.

E. Milestone Definition and Attainment Criteria

Specific milestones to manage the development of computer
resources, including computer system and support software,
will be used to ensure the proper examination of analysis,
design, implementation, integration, test documentation,
operation, maintenance, and modification phases. These
milestones will include specific criteria that will permit a
measure of their attainment. This policy relates to the prod-
uct definition and work accomplishment aspects of configu-
ration management, but the additional stress on quantitative
demonstration criteria is significant to note.

- DE ROZE AND NYMAN: THE SOFTWARE LIFE CYCLE

Also of particular significance is the rigorous treatment
which must be accorded to test and evaluation, beginning
in the earliest phases of system development, and culminating
in a complete operational test and evaluation by the ultimate
military users.

F. Software Language Standardization and Control

Higher order programming languages, as opposed to assembly
or machine languages, will be used during software design and
development, primarily to enhance life-cycle serviceability of
the software. Only DoD approved high order programming
languages (HOL’s), as specified in DoD Instruction 5000.31,
“Interim List of DoD Approved High Order Programming
Languages,” will be used for new defense system software,
unless it is conclusively demonstrated that none of the ap-
proved HOL’s are cost effective over the system life cycle,
and this will not be easy. Each DoD approved HOL will be
assigned to a designated control agent who will be responsible
for insuring the stability of the language, validating compliance
of compiler implementations with the standard language
specifications, gathering data as to the use of the language,
maintaining a repository and disseminating information on
compilers, tools, and application modules, and improving the
language over time.

This policy impacts both the language selection and prolifer-
ation problems noted earlier. In general, high-order languages
do afford considerable life-cycle benefits (particularly in the
operation and support phases) even though some inefficiencies
may be experienced in development. These inefficiencies will
be reduced with new modern languages and increased compiler
capabilities. Exceptions to the use of high-order languages
must be justified over the life cycle, and not just for develop-
ment advantages.

DoD’s long range objective is to reduce to a minimum the
number of approved high-order programming languages—
starting from seven interim standards. But the objective for
achieving this objective is cost reduction, so DoD must be
flexible in how this standardization objective is applied over
time. User and application languages for console and operator
interaction, simulators, and automated test equipment are not
yet included in the current policy initiatives.

G. Policy Initiatives Summary

These policy initiatives, incorporated in DoD Directive
5000.29 and DoD Instruction 5000.31, will have immediate
impact on the way the Defense Department does business in
all new weapon program starts, and when possible in ongoing
programs as well. In a very real sense, the directions and
intentions are clearly established and now attention must
focus on the specifics of how to best reach these goals. This
brings us to the second cornerstone of the defense software
initiatives, the software Science and Technology (S&T)
Program [11].

IV. SOFTWARE RESEARCH AND TECHNOLOGY
THRUSTS

In the long range, the DoD must depend upon the research
and technology directions of the nation at large to fully
achieve the objectives of converting software development

313

from an art to an engineering discipline. However, the Office
of the Under Secretary of Defense for Research and Engineer-
ing is focusing on several approaches to speed this process
along, such as encouraging software engineering workshops
among university and military research offices, and generation
of textual curriculum material for in-house courses of instruc-
tion in software engineering. But the near term priorities must
be (and are) on refining and transferring existing technical
know-how to all portions of the defense program development
community. This transfer will emphasize the specifics of how
to best accomplish the policy initiatives described earlier. To
achieve these technology transfer goals at the earliest time,
strong management attention at the OSD level and within the
Services, with adequate funding and priorities, is aggressively
being pursued [12]. The Defense Department budget for
fiscal year 1978 (FY78) requested $30 million for the soft-
ware science and technology (S&T) program in support of
the management initiatives, an increase of $14 million over
FY77. Subsequent congressional action on the 1977 Defense
Budget reduced this amount to $18 million, but actions are
underway to gain Congressional approval to reprogram at least
some of the deleted funding. The FY79 Defense Budget is
less aggressive, but seeks considerable real growth to $30
million to support the continuation of these software S&T
initiatives.

This increase in funding is principally targeted to coalescing
and demonstrating new software tools, methods, and tech-
niques to improve software quality and reliability, thus pro-
viding an early opportunity to avoid future cost growth. By
using demonstrations, the value of various software advances
can be verified and the application risks reduced to a point
acceptable to program managers. These S&T activities are
grouped into the three general areas described below.

A. Software Management Technology

To achieve the desired payoff from the newly established
policy and procedures, specific guidelines to assist new pro-
gram managers are a necessary first step. This is where the
software S&T base plays a critical role. The policy directives
described earlier are broad and general, and many specific
questions still remain on how to implement these policies for
each new weapons system development program. A particu-
larly difficult problem is the choosing from among a variety
of demonstrated alternative methods those software tools
and controls best suited for a particular program manager’s
needs. Thus, a key role of the S&T program will be to survey
the successful software methods, and place them into perspec-
tive from the program manager’s viewpoint. One approach
has been to develop guidebooks. The guidebooks which have
been produced to date are intended to aid government and
industry program managers and practicing programmers in
areas such as documentation standards, data collection, mon-
itoring and reporting software development status, statement-
of-work preparation, life-cycle planning, program library
specifications, chief programmer team operations, structured
programming, and training materials [13], [14]. Additional
guidebooks are in preparation on subjects such as reviews and
audits; configuration management; requirements specification;
verification, validation and certification; computer program

- 314

maintenance; cost estimating and measuring; and software
quality assurance. These “how to” documents should signifi-
cantly assist in the implementing of the new software manage-
ment thrusts, although good judgment by software developers
will continue to be the most important ingredient. The guide-
books cannot be “cookbook” solutions, since there is still
much to be learned in the science of software management.
Continuing attention will be given to evaluating the utility
of these many guidebooks. Once their utility is demonstrated,
consideration will be given to incorporating them as contract
provisions.

The program manager’s choice of effective software manage-

ment and control techniques is further complicated by lack of
measurement criteria and experience data. The experience
data that do exist lack consistency and prevent meaningful
comparisons from being made. Thus, a key role of the S&T
program is to catalog the merits of the various methods for
aiding software management and production from require-
.ments generation through operational test and evaluation.
Comprehensive software data are-being gathered from several
recent projects that have used modern methods of program-
ming, including the Aegis, Trident, DLG(N)-38, SSN-688,
Viking Lander, Apollo, Safeguard, and Cobra Dane Programs.
These data will be placed in a new Data Analysis Center for
Software at the Rome Air Development Center (RADC),
.Rome, NY. The specific software management and produc-
tion methods represented will be analyzed and compared,
with good and bad points identified, lessons learned cited, and
guidelines drafted for use by defense program decision makers.
In addition, the most meaningful quality and progress metrics
will be selected and proposed for future use in monitoring
weapon system software development.
¢ Other S&T thrusts in the Software Management Technology
area are requirements analysis techniques and life-cycle
management planning technology. The Air Force will con-
tinue to refine the Computer-Aided Requirements Analysis
tool, while the basic tool is evaluated in Air Force, National
Security Agency, Navy, and National Aeronautics and Space
Administration (NASA) programs. Meanwhile, the Army will
investigate the general utility of a requirement analysis concept
-developed under sponsorship of the Ballistic Missile Defense
Program. Under the life-cycle management technology sub-
area, the Army has documented and will refine the key ele-
ments required of a computer resource (including software)
life-cycle plan [10].
* The efforts in the Software Management Technology thrust
area will be focused initially at consolidating the current
technology, and later on advancing the state of the art. In
order to assist in this goal, the Defense System Software R&D
Technology Plan [12] has established the role of a Principal
Technology Agent (PTA). The PTA is responsible for monitor-
ing all projects within the area of responsibility, keeping
abreast of the state of the art, and advising Defense Depart-
ment technologists, developers, and users on software tech-
nology matters. The PTA’s for the Software Management
Technology area are: requirements analysis—Air Force; life
cycle management planning—Army; cost/quality data collec-
tion and analysis—Air Force; management control technology—
Air Force; and policy and procedure guidance—Air Force.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

Nineteen percent of the overall software science and tech-
nology program effort in FY77 was directed to the Software
Management Technology area. This will remain at nineteen
percent in FY78 and increase to twenty three percent in
FY79.

B. System Architecture Technology

As the degree of automation in defense systems continues
to grow, the needs for interoperability, distributed capabilities,
and resource (data base) sharing also grow. As interconnec-
tions of software supported systems are examined, network
(or system) control problems surface and needs for better
architectural understanding are recognized. The technology
investments in system architecture are focused on evolving
techniques and criteria for evaluating potential merits of new
processing architectures, and methodologies to optimize design
characteristics such as among software/hardware/firmware.
For example, in defense applications where processing func-
tions are highly structured and not subject to frequent change
(such as a flight controller), it may be more appropriate to
replace software with specialized microprocessor hardware.
The tradeoff methodology to support such decisions on a
life-cycle cost basis is not currently available, but ongoing
investigations are probing for insights into this deficiency area
within all Services.

A second dimension of the architectural technology area is
fault tolerance. In most defense applications, we cannot
accept an approach of reloading and rerunning the program
when a system fault interrupts or crashes the processing.
Spacecraft, air defense, fire control, and aircraft navigation
processing tasks are characteristics of such high reliability
applications. Processing architecture designs must accommo-
date occasional hardware failures, and software must protect
against hardware failures when possible. Parallel hardware
redundancy investigations coupled with experiments in soft-
ware failure detection monitoring and control are primary
thrusts under Air Force sponsorship [15] .

Another system architecture area of investigation concerns
the emulation capability of modern microprogrammable pro-
cessors. A number of deployed systems contain embedded
computers which are rapidly becoming unsupportable and con-
sequently obsolete. By emulating the instruction set and
interfaces of the obsolete computers using modern higher
speed lower cost minicomputers, swap-outs are possible with-
out the expense and disruption of software conversion. Emu-
lations of the AN/UYK-20 and AN/GYK-12 have been success-
fully demonstrated [16], thus making possible a reopening of
competition for applications which have effectively been the
exclusive domain of one contractor for many years. A new
initiative will evaluate the feasibility of several standard
military computer family architectures. Generation of vender
independent specifications for current inventory embedded
computers is a critical element of this project. Emphasis is to
define form, fit, and function specifications at the embedded
computer (black box) level. A more futuristic part of the
program is exploring the technical, economic, and competitive
feasibility of a standard computer architecture (instruction
set, register composition, and I/O protocols) which could
serve a variety of DoD applications [17]. The form, fit, and

DE ROZE AND NYMAN: THE SOFTWARE LIFE CYCLE

function concept is being investigated at both computer, as a
packaged product, and internal module levels. Consideration
is presently being given to establishing a jointly funded multi-
service effort for this futuristic part of the architecture pro-
gram, coupling the major application areas of space, avionics,
command and control, telecommunications, and surveillance.
The long range goal is to reduce the number of different
machine architectures the DoD must support (both software
and hardware support) while simultaneously preserving the
ability to inject new technology over the life cycle within a
highly competitive environment.

A fourth area of investigation involves system level inter-
operability. Many opportunities are available for the future,
and requirements exist today to interconnect some of the
computer systems which support more or less autonomous
weapons functions. Such interoperability promises increased
capabilities, but at a significant technical and operational risk
today. The joint Navy/Defense Advanced Research Projects
Agency (DARPA) Advanced Command and Control Archi-
tectural Testbed (ACCAT) at Naval Ocean Systems Center,
San Diego, CA, will be used to explore intraship and intership
computer system connectivity issues. Avionics computer sys-
tem interoperability will be explored in the Air Force Avionics
Laboratory’s Digital Avionics Information System (DAIS)
demonstrator, the Naval Air Development Center’s Basic
Avionic Subsystem Integration Concept (BASIC) testbed, and
under the Army’s Avionics Laboratory’s Digital Modular
Avionics Program (DIMAP). Bus Multiplex Standard 1553A
forms the foundation for these avionics systems connectivity
experiments and permits hardware to be interchanged among
these demonstrators. Alternative command center interoper-
ability protocols and interfaces for Army applications will be
investigated using the Telecommunications Design Center
facility at the Army’s Center for Tactical Computer Sciences
(CENTACS), Fort Monmouth, NJ.

A final thrust involves computer network security, particu-
larly technology to permit protection of different levels of
classified information being processed or stored concurrently.
As the technology for merging distributed data bases matures,
the need for concurrent (time shared) protection among
various classified levels will rapidly become a major barrier
to fully integrated command, control, communications, and
intelligence operations. The need for resource sharing and
the connectivity demanded in crisis management situations
will dictate interoperability among defense system com-
puters. Guaranteed separation among various national security
classifications is not possible with today’s computer archi-
tectures operating in time-shared modes. In addition, need-to-
know protection is not now available. The primary thrust
of the planned computer security technology activities is to
document consolidated requirements, develop threat versus
cost models, develop security metrics and security certification
procedures, and explore technical approaches with the hope
of influencing the next generation of commercial processor
architectures to provide the desired level of security protec-
tion. The security kernel approach appears the most promis-
ing for the short term. It has been demonstrated on a PDP-11
minicomputer [18], the premise upon which it is based
has been proven theoretically valid, and efforts are underway

315

to implement the concept into the Bell Laboratories UNIX
minicomputer operating system and the IBM 370 “Virtual
Machine” operating system.

The Defense System Software R&D Technology Plan assigns
Principal Technology Agent responsibilities for the System
Architecture Technology area as follows: reliability and
survivability—Air Force; interoperability—Army; advanced
architecture concepts and tradeoffs—Air Force; computer
architecture standardization and commonality—Army; testbeds
and demonstrators—all Services.

Of the $16M Software S&T program, 26 percent was in-
vested in technology for the Systems Architecture area in
FY77. This will increase to 28 percent at the FY78 program
and grow to 40 percent of the FY79 program as the desire to
advance technology is emphasized over consolidating tech-
nology already available.

C. Technology to Improve the Programming Environment

The two thrusts in this area are motivated by the desire to
increase the productivity of software system designers, pro-
grammers, and testers. Since the software development
process is a labor intensive operation, productivity increases
translate -directly into savings. Over the past decade, tech-
nology improvements have increased programmer productivity
by nearly one order of magnitude. However, in the same time
frame, hardware costs have dropped by over two orders of
magnitude, and consequently software costs (design, coding,
and testing) now constitute 70 percent of the automation
costs for the average new embedded computer application.
The two thrusts being pursued are standardization and ad-
vanced tools for software developers.

Actions have been taken to reduce the proliferation of HOL
implementations. To improve the future supportability of
software systems and increase the transfer of available soft-
ware among new systems, seven HOL’s have been selected
under DoD Instruction 5000.31 and all new weapons systems
development programs must use one of these HOL’s: TACPOL,
CMS-2, SPL-1, Jovial J3, Jovial J73LI, Fortran, or Cobol.
Whichever language is selected, 100 percent of the program-
ming must be done in the HOL, where constructs permit. If
optimization is needed, then subroutines may be coded in
assembly or machine language, but documentation will be
provided at both HOL (functional) and implementation
language levels. Each Service will be responsible for establish-
ing configuration control for at least one of the languages.
The initial formation and establishment of the control facility
and the continuing advancement of the language and its tools
will be provided by the software S&T program. The exact
functions to be performed in language control are still under
study, but a key role will be to verify and distribute compilers
and maintain a repository of programmer aids and tools. The
center may also serve as a repository for high leveraged soft-
ware applications modules.

One experiment, the National Software Works demonstra-
tor, will determine the feasibility of integrating a distributed
network of dissimilar software tools to create a repository
which is interactive and accessible via the ARPANET [19].
Control and accountability of the use of assets within the
distributed prototype “software factory” are key technical

316

issues being explored. Other related activities such as the
Navy’s System Design Laboratory and the Army’s Integrated
Software Development System, will investigate software
development concepts previously demonstrated for particular
systems and determine their value to Service-wide embedded
computer applications. A variant of the Integrated Software
Development System is also being applied under the Army
Position, Location, and Reporting System Program.

A final effort under the standardization thrust is the investi-
gation of the technical and economic feasibility of a modern
common DoD HOL. A fully integrated set of language re-
quirements has been painstakingly coordinated which is
responsive to all DoD application areas (command and control,
avionics, space systems, telecommunications, intelligence,
surveillance, simulation and test, and evaluation) [20]. Exist-
ing HOL’s have been evaluated relative to the requirements,
and four competitive efforts are now underway to design a
modern HOL based on the Pascal language. The risk areas are
utility across broad DoD embedded computer applications
and ease of use, or practicality. These concerns will be re-
solved in FY79, and if successful, the plans call for adding this
modern language to the list of approved DoD HOL’s, while
simultaneously deemphasizing future use of several of the
older HOL’s. This HOL effort is also important because of
the large number of deficiencies of current interim standard
HOL’s, particularly for real time I/O intensive applications.

A second major thrust involves the evaluation of advanced
tools for software testing and validation. As described earlier,
a data base capturing recent experiences using modern methods
of programming is being established. =~ Numerous lessons
learned and trends should result from analysis of these data.
Various metrics and test milestone criteria are under investiga-
tion to determine utility. Experiments with automatic gener-
ation of test case programs focused at fault detection of
mission critical functions are in progress in order that these
critical software faults can be discovered, isolated, and cor-
rected early in the development cycle. Much work remains
to be done in perfecting the many dimensions of the software
test process.

As part of the second thrust, a major opportunity is auto-
matic generation of software documentation. The more
advanced management control techniques utilize a computer
to monitor and record the status of software development.
This same computer can be used by the programmer for
diagnostic checks, traceability, tool application, or emulation
of the system being developed. Thus, the programmer enters
all his work into the computer via a remote console and the
computer tracks the development progress, issues reports for
project management, and assimilates the system documenta-
tion. If 10 percent more automatic generation of documen-
tation were accomplished than at present, at least $10 million
annually could be saved by the DoD. The results of the
analyses conducted on software data deposited in the RADC
Data Analysis Center for Software should also help resolve
many of the procurement issues of “what data should be
provided” and “how useful are the data.” In the opinion of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

many DoD software maintainers, we procure too much data
and what we get is not very useful.

Finally DARPA is conducting research into formal methods
for software verification and maintenance. Today, there is
no supporting body of knowledge which permits us to guaran-
tee that a software package is error free. Typically, we test it
until we run out of funds or time, and certify that it is correct
for the inputs we applied during test. The ARPA investiga-
tions are seeking new foundations of knowledge which will
lead to assertive procedures of correctness. Thus far, tech-
niques have been demonstrated which permit software modules
of less than 1000 lines of code to be “proven” correct. But
much more work is needed.

The Defense System Software R&D Technology Plan assigns
Principal Technology Agents for the Implementation and
Maintenance Environment area as follows: formal methods
of software verification and maintenance—DARPA; TACPOL
language environment—Army; CMS-2 and SPL-1 language
environments—Navy; Jovial language environments—Air Force;
Cobol and Fortran language environments—Office of the
Assistant Secretary of Defense (Comptroller).

In FY77, S5 percent of the software S&T program was
directed to the Implementation and Maintenance Environment
area. This will remain at 53 percent through FY78 and de-
crease to 37 percent in FY79 as the language control facilities
are transferred to O&M accounts.

D. Testbeds

The fundamental obstacle to the transfer of new software
technology to the developer is the establishment of confidence
and credibility of new techniques or methods in a system
context. For software, this involves not only showing that
the new technology solves a problem or improves the product,
but that it is better or cheaper than alternatives currently in
use. The principal approach chosen to transfer software
technology is through systems context demonstrators. Soft-
ware “building blocks,” as components of a system, can be
evaluated in such testbeds as the Navy’s Advanced Command
and Control Architectural Testbed [21], the Air Force Digital
Avionics Information System Testbed [15], the Army Tele-
communications Design Center, the Defense Advanced Re-
search Project Agency’s National Software Works [19] dem-
onstrator, or the Army’s Tactical Management Information
System Program. These testbeds also permit the military user
to experiment with capabilities and they assist him in formu-
lation of requirements. Of course, the final proof of the
technology transfer process is the application of the new
building blocks in weapon system development programs.

V. CONCLUSIONS

In this paper we have reviewed some of the more important
policy actions that have been taken within the DoD. We have
also described the essence of our technological thrusts which
underpin the management practices. In varying degrees, these
techniques are being applied to all current and new defense
system programs. DoD is now getting to the point where

DE ROZE AND NYMAN: THE SOFTWARE LIFE CYCLE

meaningful impact can, and is, being made on the way it does
business within the defense software community. DoD has
great need for help in fulfilling our aspirations to “beat” the
software problem, and there is no doubt that we will receive

it.

ACCAT
ADP

Aegis
AFAL
AN/GYK

AN/UYK
ARPANET

BASIC
CENTACS
CMS-2
Cobol

Cobra Dane
DAIS
DARPA
DIMAP
DoD
DSARC
FBM
Fortran

FY
HOL
I/0
Jovial J3

Jovial J73LI

NADC
NASA

NOSC
(01D
0&M
Pascal

PDP

PLRS
PTA
RADC
R&D
Safeguard

DEeFINITIONS OF TERMS USED

Advanced Command and Control Architectural
Testbed.

Automatic Data Processing (synonymous with
Electronic Data Processing as used here).

An advanced shipboard weapon system.

Air Force Avionics Lab.

Army-Navy designation for ground based
computer.

Army-Navy
computer.

A computer-to-computer communications net-
work using packet message techniques.

Basic Avionic Subsystem Integration Concept.

Center for Tactical Computer Science.

Computer programming language circa 1966.

A business oriented computer programming
language circa 1959.

Radar Surveillance System.

Digital Avionics Information System.

Defense Advanced Research Projects Agency.

Digital Modular Avionics Program.

Department of Defense.

Defense System Acquisition Review Council.

Fleet Ballistic Missile.

Scientifically oriented computer programming
language circa 1955.

Fiscal year.

High Order Computer Programming Language.

Input/Output.

Jules own Version of the International Al-
gorithmic Language, type 3.

Jules own Version of the International Al-
gorithmic Language, type 73 level 1.

Naval Air Development Center.

National Aeronautics and Space Administra-
tion.

Naval Ocean Systems Center.

Office of the Secretary of Defense.

Operation and Maintenance.

Modern computer programming language circa
1968.

Computer marketed by Digital Equipment
Corporation.

Position Location and Reporting System.

Principal Technology Agent.

Rome Air Development Center.

Research and Development.

Ballistic Missile Defense Program.

designation for general utility

317
SPL-1 Modern computer programming language circa
1974.
S&T Science & Technology (early part of R&D).
TACPOL Tactical Procedure Oriented Computer Pro-
gramming Language.
UNIX A software operating system for PDP-11
computer.
WWMCCS Worldwide Military Command and Control
System.
REFERENCES

[1]

[2]

(3]

[4]

(51
[6]

(7]

(8]

9]
[10]

[11]

[12]

[13]

“DoD weapon system software acquisition and management
study,” the MITRE Corp., Bedford, MA, Rep. MTR-6908, vol. I
and II, June 1975.

A. Kossiakoff et al., “DoD weapon systems software manage-
ment study,” Applied Physics Laboratory, The Johns Hopkins
Univ., Laurel, MD, Rep. SR-75-3, June 1975.

J. H. Manley, “Findings and recommendations of the joint
logistics commanders software reliability work group (SRWG
report),” Headquarters, Air Force Systems Command (XRF),
Andrews AFB, MD, Final Rep., vol. I and II, Nov. 1, 1975.

J. Goldberg, “Proceedings of a Symposium on the high cost of
software,” held at the Naval Postgraduate School, Monterey,
CA, DDC Accession Number AD-770 121, Sept. 17-19, 1973.
“Proceedings: Software cost and sizing workshop,” USAF
Electronic Systems Division, Hanscom Field, MA, Oct. 1974.

H. A. Richardson, “Abridged proceedings from the software
management conference—First series 1976,” sponsored by the
Los Angeles Section of the American Institute of Aeronautics
and Astronautics in cooperation with the Association for Com-
puting Machinery, Washington, DC, Mar. 22-23, 1977, and
Anaheim, CA, Apr. 5-6,1977.

W. L. Trainer, “Software—From satan to savior,”
NAECON Conf., May 1973.

B. C. De Roze, “Defense systems software management plan,”
Office of the Assistant Secretary of Defense (Installations and

in Proc.

Logistics), DDC Accession Number AD-A022 558, Mar. 19,
1976.
DoD Directive 5000.1, “Major system acquisition,” revision,

Jan. 18, 1977.

“Life cycle events,” in Software Acquisition Management Guide-
book Series, USAF Electronic Systems Division, Hanscom Field,
MA, Tech. Rep. 77-22, DDC Accession Number AD-A037 115,
Feb. 1977.

T. H. Nyman, “Information processing technology,” RDT&E
Technical Area Descriptions, DDC Accession Number AD-C011
372, Apr. 1, 1977, pp. 279-298.

T. H. Nyman et al., “Defense system software R&D technology
plan,” R&D Technology Panel to the Management Steering
Committee for Embedded Computer Resources, Office of the
Under Secretary of Defense for Research and Engineering, De-
partment of Defense, Rep., Nov. 1977.

Software Acquisition Management Guidebook Series, USAF
Electronic Systems Division, Hanscom AFB, MA:

“Monitoring and reporting software development status,”
DDC Accession Number AD-A016 488, Sept. 1975;

“Regulations, specifications and standards,” DDC Accession
Number AD-A016 401, Oct. 1975;

“Contracting for software acquisition,” DDC Accession Num-
ber AD-A020 444, Jan. 1976;

“Statement of work preparation,” DDC Accession Number
AD-A035 924, Jan. 1977;

“Software development and maintenance facilities,” DDC
Accession Number AD-A038 234, Apr. 1977,

“Software documentation requirements,” DDC Accession
Number AD-A027 051, Apr. 1977;

“Computer programming configuration management,” ESD
Rep. TR-77-254, Aug. 1977;

318

“Software acquisition management guidebook: Software
quality assurance,” ESD Rep. TR-77-255, Aug. 1977.

Aeronautical Systems Division (AES), Wright-Patterson AFB, OH:

“Overview of software development and management,” DDC
Accession Number AD-A030 591;

“Software acquisition process,” DDC Accession Number
AD-A030592;

“Summary of related standards and regulations,” DDC Acces-
sion Number AD-A430 593;

“Technical aspects relating to software acquisition,” DDC
Accession Number AD-A030 594.

[14] Structured Programming Series, USAF Rome Air Development
Center, Griffis AFB, NY, vol. 1-15, July 1975, DDC Accession
Numbers follow:

“Programming language standards,” DDC Accession Number
AD-A016 771;

“Pre-compiler
AD-A018 046;

“Pre-compiler program documentation,” DDC Accession
Number AD-A013 255;

“Data structuring,” DDC Accession Number AD-A015 794;

“Program support library requirements,” DDC Accession
Number AD-A003 339;

“Program support library program specifications,” DDC
Accession Number AD-A007 796;

“Documentation standards,” DDC Accession Numbers
AD-A008 639 and AD-A016 414;

“Program design study,” DDC Accession Number AD-A016
415;

“Management data collection and reporting,” DDC Accession
Number AD-A008 640;

“Chief programmer team operations,” DDC Accession Num-
ber AD-A008 861;

“Estimating software resource requirements,” DDC Accession
Number AD-A016 416;

“Training materials,” DDC Accession Number AD-A026 947;

“Software tool impact,” DDC Accession Number AD-A015

specifications,” DDC Accession Number

7953
“Validation and verification,” DDC Accession Number
AD-A016 668;

“Final report,” DDC Accession Number AD-A020 858.

[15] B. List, “A major crossroads in the development of avionics
systems,” Astronaut. Aeronaut., Jan. 1973.

W. J. Kenny and C. D. May, “The CDC 480-AN/AYK-14(V) com-
puter system,” in Proc. COMPCON Fall 1977, IEEE Comput.
Soc. Int. Conf., Washington, DC, IEEE Catalog 77CH 1258-3C,
Sept. 6-9, 1977.

W. E. Burr and W. R. Smith, “Comparing architectures,” Datama-
tion, Feb. 1977, pp. 48-52.

W. L. Schiller, “The design and specification of a security kernel
for the PDP 11-45,” the MITRE Corp., Bedford, MA, DDC
Accession Number AD-A011 712, May 1975.

W. Carlson, “National software works,” presented at the AIIE
Conf. Distributed Syst., July 1977.

[20] “Higher order DoD requirements for computer programming

[16]

(17]
[18]

[19]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

languages—revised IRONMAN,” DoD Higher Order Language
Working Group to the Management Steering Committee for
Embedded Computer Resources, Office of the Under Secretary
of Defense for Research and Engineering, July 1977.

F. Hollister, “Advanced command and control architectural
testbed (ACCAT),” Defense Advanced Research Projects Agency/
IPT, Arlington, VA, Sept. 20, 1977.

[21]

Barry C. De Roze received the B.S. degree in
physics from Miami University, Oxford, OH,
and the M.S. degree in aerospace engineering
from Rensselaer Polytechnic Institute, Troy,
NY.

He is currently the Manager of Defense
System Software within the Office of the
Secretary of Defense, Washington, DC. In
this capacity, he is responsible for DoD’s pol-
icy, practice, procedure, and technology
initiatives in software management, and for
their implementation in weapon, communications, command and
control, and intelligence systems. Prior to joining DoD, he was the
Program Director for Software Reliability at Vitro Laboratories Divi-
sion of Automation Industries. He was responsible for technology
development and application, and for software verification and valida-
tion on a number of DoD systems. He was previously with the Corpor-
ate Systems Center of United Aircraft Corporation where he was con-
cerned with the guidance and control of missile and space vehicles.

Thomas H. Nyman (S’61-M’75-SM’78) re-
ceived the B.S. degree in electrical engineering
from the University of Washington, Seattle,
and the M.S. degree from the Massachusetts
Institute of Technology, Cambridge.

He was Staff Specialist for Electronic Systems
Technology with the Research and Advanced
Technology Directorate within the Office of
the Under Secretary of Defense, The Pentagon,
Washington, DC, (Research and Engineering)
(formerly DDR&E). His responsibilities in-
volved Defense Department policy formulation, technical review and
program evaluation of basic research, exploratory development and early
advanced development activities in command, control, avionics, com-
munications, and computer technology. Prior to joining DDR&E in
1975, he was with the MITRE Corporation, the U.S. Navy, and Bell
Laboratories in programs involving sensors, navigation, communications,
and weapons delivery. He is presently with the General Research
Corporation, McLean, VA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manharaa.com

